

Dual Contrastive Transformer for Hierarchical Preference Modeling in Sequential Recommendation

Chengkai Huang* chengkai.huang1@unsw.edu.au The University of New South Wales Sydney, NSW, Australia

Xianzhi Wang XIANZHI.WANG@uts.edu.au University of Technology Sydney Sydney, NSW, Australia Shoujin Wang shoujin.wang@uts.edu.au University of Technology Sydney Sydney, NSW, Australia

Lina Yao lina.yao@unsw.edu.au CSIRO's Data 61 and UNSW Sydney, NSW, Australia

SIGIR 2023

Reported by Nengqiang Xiang

Introduction

Figure 1: Alice's hierarchical preference dynamics through a sequence of purchased items. Alice's low-level preference indicated by item ID changes sharply while her high-level preference indicated by category changes smoothly. Overlooking the informative high-level signals.

The user-item interactions in the sequential recommendation are often limited and sparse.

Contextual information is often learned from item IDs without the consideration of richer semantic relations between items,

In this paper, the author proposed a novel hierarchical preference modeling framework to substantially model the complex low- and highlevel preference dynamics.

(a) The Overall Structure of Hierarchical Preference Modelling

(b) Semantics-enhanced Context Embedding Learning

PRELIMINARIES:

Embedding Layers

	Item ID Embedding:	Position Embedding:			
$\mathcal{D} = \{\mathcal{S}_1, \dots, \mathcal{S}_n\}$	$E_V \in \mathbf{R}^{ V \times d}$	$E_P \in \mathbf{R}^{L \times d}$			
$S_i = \langle O_i, v_n \rangle$	$e_v = E_V(v_i) \in \mathbf{R}^{1xd}$	$p_i = E_P(p_i) \in \mathbf{R}^{1xd}$			
$O_i = \{V_i, C_i, T_i\}$	Category Type Embedding:				
$V_{i} = \{n_{i}, n_{i}, \dots, n_{i}\}$	$E_C \in \mathbf{R}^{ C \times d}$				
$v_1 = \{o_1, o_2,, o_{n-1}\}$	$e_c = E_C(c_i) \in \mathbf{R}^{1xd}$				
$C_i = \{c_1, c_2,, c_{n-1}\}$	Knowledge Graph Embedding:				
$T_i = \{t_1, t_2,, t_{n-1}\}$					
	$f(v_h, r, v_t) = \ \mathbf{e}_{\mathbf{v}, \mathbf{h}} + \mathbf{e}_{\mathbf{r}} - \mathbf{e}_{\mathbf{v}, \mathbf{t}}\ _2^2, f(c_h, \mathbf{v}) = \ \mathbf{e}_{\mathbf{v}, \mathbf{h}} + \mathbf{e}_{\mathbf{r}} - \mathbf{e}_{\mathbf{v}, \mathbf{t}}\ _2^2, f(c_h, \mathbf{v}) = \ \mathbf{e}_{\mathbf{v}, \mathbf{h}} + \mathbf{e}_{\mathbf{r}} - \mathbf{e}_{\mathbf{v}, \mathbf{t}}\ _2^2, f(c_h, \mathbf{v}) = \ \mathbf{e}_{\mathbf{v}, \mathbf{h}} + \mathbf{e}_{\mathbf{r}} - \mathbf{e}_{\mathbf{v}, \mathbf{t}}\ _2^2, f(c_h, \mathbf{v}) = \ \mathbf{e}_{\mathbf{v}, \mathbf{h}} + \mathbf{e}_{\mathbf{r}} - \mathbf{e}_{\mathbf{v}, \mathbf{t}}\ _2^2, f(c_h, \mathbf{v}) = \ \mathbf{e}_{\mathbf{v}, \mathbf{h}} + \mathbf{e}_{\mathbf{r}} - \mathbf{e}_{\mathbf{v}, \mathbf{t}}\ _2^2, f(c_h, \mathbf{v}) = \ \mathbf{e}_{\mathbf{v}, \mathbf{h}} + \mathbf{e}_{\mathbf{r}} - \mathbf{e}_{\mathbf{v}, \mathbf{t}}\ _2^2, f(c_h, \mathbf{v}) = \ \mathbf{e}_{\mathbf{v}, \mathbf{h}} + \mathbf{e}_{\mathbf{r}} - \mathbf{e}_{\mathbf{v}, \mathbf{t}}\ _2^2, f(c_h, \mathbf{v}) = \ \mathbf{e}_{\mathbf{v}, \mathbf{h}} + \mathbf{e}_{\mathbf{r}} - \mathbf{e}_{\mathbf{v}, \mathbf{t}}\ _2^2, f(c_h, \mathbf{v}) = \ \mathbf{e}_{\mathbf{v}, \mathbf{h}} + \mathbf{e}_{\mathbf{r}} - \mathbf{e}_{\mathbf{v}, \mathbf{t}}\ _2^2, f(c_h, \mathbf{v}) = \ \mathbf{e}_{\mathbf{v}, \mathbf{h}} + \mathbf{e}_{\mathbf{r}} - \mathbf{e}_{\mathbf{v}, \mathbf{t}}\ _2^2, f(c_h, \mathbf{v}) = \ \mathbf{e}_{\mathbf{v}, \mathbf{h}} + \mathbf{e}_{\mathbf{r}} - \mathbf{e}_{\mathbf{v}, \mathbf{t}}\ _2^2,$	$r, c_t) = \ \mathbf{e_{c,h}} + \mathbf{e_r} - \mathbf{e_{c,t}}\ _2^2, (1)$			

$$e_v \in E_V$$
 $e_r \in E_R$ $e_c \in E_C$

Dual Transformer for Hierarchical Preference Modeling:

$$e_{i,v} = e_{i,v} + p_i, \quad e_{i,c} = e_{i,c} + p_i,$$
 (2)

$$MultiHead(H_{i,*}) = W^{O}concat(head_1; head_2; \cdots; head_h), \quad (3)$$

head_i = Attention
$$\left(H_{i,*}W_i^Q, H_{i,*}W_i^K, H_{i,*}W_i^V\right)$$
, (4)

$$A_i = Attention(Q, K, V) = softmax\left(\frac{QK^{\top}}{\sqrt{d/h}}\right)V,$$
 (5)

$$FFN(A_i) = \text{ReLU}(A_iW_1 + b_1)W_2 + b_2,$$
 (6)

$$H_{i,*} = LayerNorm(H_{i,*} + Dropout(FFN(A_i))), \quad (7)$$

$$v_f = \frac{1}{L} \sum_{l=1}^{L} S_{i,v_l}, \quad c_f = \frac{1}{L} \sum_{l=1}^{L} S_{i,c_l},$$
 (8)

Modelling

(b) Semantics-enhanced Context Embedding Learning

Semantics-enhanced Context Embedding Learning:

also_buy relations:

$$\phi_v^1(\Delta t) = N(\Delta t|0,\sigma_v), \quad \phi_c^1(\Delta t) = N(\Delta t|0,\sigma_c), \quad (9)$$

also_view relations:

$$\phi_v^2(\Delta t) = -N(\Delta t|0,\sigma_v) + N(\Delta t|\mu_v,\sigma_v), \quad (10)$$

$$\phi_c^2(\Delta t) = -N(\Delta t|0,\sigma_c) + N(\Delta t|\mu_c,\sigma_c), \quad (11)$$

$$e_{v,n} = e_{v,n} + e_{r,v}, e_{r,v} = \sum_{r \in \mathcal{R}} f_r(S_{i,v}, t, e_v) \cdot e_r,$$
(12)

$$e_{c,n} = e_{c,n} + e_{r,c}, e_{r,c} = \sum_{r \in \mathcal{R}} f_r(S_{i,c}, t, e_i) \cdot e_r$$
 (13)

$$f_{r1}(S_{i,v}, v, t) = \sum_{v', t'} I_r(v, v') \cdot \phi(t - t'),$$
(14)

$$f_{r2}(S_{i,c}, c, t) = \sum_{c',t'} I_r(c, c') \cdot \phi(t - t'),$$
(15)

Semantics-enhanced Context Embedding Learning:

$$\mathcal{L}_{cl_{item}}(e_{v,n}, v_f) = -\log \frac{\exp(\sin(e_{v,n}, v_f))}{\exp(\sin(e_{v,n}, v_f))) + \sum_{v_f^- \in V_f} \sin(e_{v,n}, v_f^-)}, \qquad \mathcal{L}_{cl_{cate}}(e_{c,n}, c_f) = -\log \frac{\exp(\sin(e_{c,n}, c_f))}{\exp(\sin(e_{c,n}, c_f))) + \sum_{c_f^- \in C_f} \sin(e_{c,n}, c_f^-)},$$
(16) (17)

Dataset	Metric	FPMC	GRU4Rec	Caser	SASRec	TiSASRec	SLRS+	Chorus	DIF	CL4Rec	S3Rec	ContraRec	DuoRec	KDA	HPM	Improv.
Beauty	HR@5	0.3392	0.3202	0.3210	0.3666	0.3872	0.4339	0.4536	0.4102	0.3754	0.3812	0.4012	0.4123	0.4921	0.5141*	4.78%
	HR@10	0.4290	0.4311	0.4345	0.4590	0.4559	0.5337	0.5698	0.5209	0.4660	0.4810	0.4962	0.5039	0.6076	0.6298*	3.65%
	HR@20	0.5393	0.5693	0.5757	0.5743	0.5700	0.6361	0.6838	0.6421	0.5830	0.6057	0.6065	0.6131	0.7221	0.7424*	2.81%
	HR@50	0.7511	0.7973	0.8097	0.7756	0.7745	0.8033	0.8536	0.8284	0.8013	0.8146	0.8530	0.8033	0.8853	0.8961*	1.22%
	NDCG@5	0.2558	0.2271	0.2246	0.2797	0.2904	0.3319	0.3386	0.3016	0.2842	0.3073	0.3406	0.3158	0.3666	0.3864*	5.40%
	NDCG@10	0.2848	0.2628	0.2612	0.3094	0.3036	0.3642	0.3762	0.3374	0.3134	0.3379	0.3784	0.3454	0.4040	0.4239*	4.93%
	NDCG@20	0.3125	0.2976	0.2967	0.3385	0.3324	0.3900	0.4050	0.3679	0.3429	0.3657	0.4058	0.3729	0.4329	0.4524*	4.50%
	NDCG@50	0.3542	0.3426	0.3430	0.3782	0.3728	0.4232	0.4386	0.4048	0.3859	0.4041	0.4397	0.4104	0.4653	0.4830*	3.80%
	HR@5	0.2020	0.2142	0.2269	0.2301	0.2722	0.3029	0.3826	0.2977	0.2600	0.2787	0.3798	0.2781	0.3863	0.4526*	17.16%
	HR@10	0.2834	0.3142	0.3354	0.3571	0.3808	0.3904	0.4916	0.4068	0.3693	0.3797	0.4891	0.3799	0.4991	0.5748*	15.17%
	HR@20	0.4014	0.4517	0.4892	0.5097	0.5142	0.5004	0.6141	0.5403	0.5161	0.5166	0.6094	0.5155	0.6270	0.7064*	12.66%
Clathing	HR@50	0.6553	0.7143	0.7531	0.7453	0.7405	0.6948	0.8046	0.7600	0.7839	0.7665	0.8028	0.7650	0.8317	0.8803*	5.84%
Clothing	NDCG@5	0.1442	0.1461	0.1548	0.1642	0.1927	0.2329	0.2840	0.2130	0.1854	0.2016	0.2840	0.2012	0.2880	0.3387*	17.61%
	NDCG@10	0.1703	0.1783	0.1897	0.1946	0.2278	0.2611	0.3192	0.2481	0.2206	0.2341	0.3193	0.2339	0.3244	0.3781*	16.55%
	NDCG@20	0.2000	0.2130	0.2284	0.2349	0.2613	0.2888	0.3501	0.2817	0.2576	0.2686	0.3496	0.2680	0.3567	0.4114*	15.34%
	NDCG@50	0.2499	0.2647	0.2807	0.2923	0.3060	0.3271	0.3878	0.3252	0.3103	0.3179	0.3879	0.3172	0.3973	0.4460*	12.26%
Sports	HR@5	0.3260	0.3015	0.3145	0.3414	0.3475	0.3900	0.4544	0.3945	0.3719	0.3960	0.4544	0.3948	0.4672	0.4984*	6.68%
	HR@10	0.4373	0.4301	0.4423	0.4566	0.4608	0.4827	0.5823	0.5197	0.5035	0.5160	0.5823	0.5151	0.6021	0.6306*	4.73%
	HR@20	0.5748	0.5918	0.6039	0.5943	0.6003	0.5961	0.7162	0.6612	0.6555	0.6567	0.7162	0.6553	0.7392	0.7638*	3.33%
	HR@50	0.8070	0.8412	0.8496	0.8096	0.8131	0.7784	0.8855	0.8575	0.8652	0.8619	0.8855	0.8631	0.9042	0.9198*	1.72%
	NDCG@5	0.2381	0.2085	0.2175	0.2494	0.2535	0.3013	0.3354	0.2852	0.2681	0.2906	0.3354	0.2894	0.3402	0.3708*	8.25%
	NDCG@10	0.2740	0.2498	0.2588	0.2866	0.2901	0.3311	0.3767	0.3257	0.3106	0.3294	0.3767	0.3282	0.3838	0.4136*	8.99%
	NDCG@20	0.3086	0.2905	0.2995	0.3214	0.3253	0.3597	0.4106	0.3615	0.3489	0.3648	0.4106	0.3636	0.4185	0.4474*	6.91%
	NDCG@50	0.3546	0.3400	0.3484	0.3641	0.3675	0.3957	0.4443	0.4005	0.3907	0.4056	0.4443	0.4049	0.4515	0.4785*	5.98%

Cellphone	HR@5	0.4003	0.3015	0.3937	0.4439	0.4520	0.4696	0.4697	0.4718	0.4085	0.4505	0.4829	0.4745	0.5497	0.5835*	6.15%
	HR@10	0.5098	0.4301	0.5309	0.5595	0.5767	0.5641	0.5929	0.5951	0.5415	0.5819	0.5994	0.5920	0.6745	0.7050*	4.52%
	HR@20	0.6321	0.5918	0.6810	0.6817	0.7022	0.6637	0.7152	0.7157	0.6861	0.7147	0.7211	0.7151	0.7923	0.8225*	3.81%
	HR@50	0.8277	0.8412	0.8849	0.8676	0.8708	0.8172	0.8695	0.8749	0.8825	0.8880	0.8831	0.8792	0.9263	0.9428*	1.78%
	NDCG@5	0.3027	0.2085	0.2800	0.3353	0.3344	0.3634	0.3530	0.3526	0.2967	0.3287	0.3673	0.3602	0.4119	0.4487*	8.76%
	NDCG@10	0.3381	0.2498	0.3243	0.3727	0.3748	0.3939	0.3929	0.3925	0.3396	0.3712	0.4050	0.3983	0.4523	0.4882*	7.94%
	NDCG@20	0.3690	0.2905	0.3622	0.4036	0.4065	0.4191	0.4238	0.4230	0.3761	0.4047	0.4358	0.4294	0.4821	0.5179*	7.43%
	NDCG@50	0.4077	0.3400	0.4028	0.4370	0.4401	0.4495	0.4545	0.4548	0.4152	0.4393	0.4681	0.4620	0.5089	0.5419*	6.48%
	HR@5	0.3373	0.2902	0.2898	0.3602	0.3475	0.4368	0.4124	0.3843	0.3627	0.3759	0.4015	0.4001	0.4805	0.4927*	2.54%
	HR@10	0.4233	0.4060	0.4103	0.4570	0.4608	0.5345	0.5203	0.4924	0.4643	0.4731	0.4958	0.4953	0.5882	0.6039*	2.67%
	HR@20	0.5283	0.5546	0.5590	0.5700	0.6003	0.6440	0.6443	0.6149	0.5900	0.5972	0.6181	0.6164	0.7019	0.7211*	2.74%
T	HR@50	0.7482	0.8067	0.8107	0.7789	0.8131	0.8012	0.8277	0.8178	0.8208	0.8101	0.8256	0.8244	0.8772	0.8922*	1.71%
loys	NDCG@5	0.2583	0.1974	0.1947	0.2738	0.2535	0.3490	0.3132	0.2829	0.2630	0.2811	0.3067	0.3046	0.3660	0.3807*	4.02%
	NDCG@10	0.2860	0.2348	0.2336	0.3050	0.2901	0.3804	0.3480	0.3178	0.2957	0.3124	0.3371	0.3355	0.4007	0.4166*	3.97%
	NDCG@20	0.3124	0.2721	0.2710	0.3334	0.3253	0.4081	0.3793	0.3488	0.3273	0.3437	0.3679	0.3660	0.4294	0.4462*	3.91%
	NDCG@50	0.3556	0.3220	0.3207	0.3747	0.3675	0.4392	0.4156	0.3890	0.3707	0.3858	0.4089	0.4071	0.4642	0.4803*	3.47%
Grocery	HR@5	0.3618	0.3737	0.3145	0.3925	0.4069	0.4378	0.4513	0.4301	0.3669	0.4029	0.4268	0.4269	0.5168	0.5432*	5.11%
	HR@10	0.4419	0.4793	0.4423	0.4801	0.5232	0.5523	0.5818	0.5376	0.4624	0.5051	0.5132	0.5127	0.6314	0.6476*	2.57%
	HR@20	0.5432	0.6013	0.6039	0.5822	0.6350	0.6517	0.6956	0.6465	0.5737	0.6260	0.6170	0.6213	0.7401	0.7514*	1.53%
	HR@50	0.7511	0.8245	0.8496	0.7709	0.8217	0.7995	0.8576	0.8273	0.7964	0.8202	0.8157	0.8190	0.8901	0.8999*	1.10%
	NDCG@5	0.2816	0.2684	0.2175	0.2941	0.2906	0.3266	0.3223	0.3122	0.2702	0.2969	0.3291	0.3293	0.3892	0.4088*	5.04%
	NDCG@10	0.3073	0.3024	0.2588	0.3231	0.3283	0.3637	0.3647	0.3470	0.2992	0.3299	0.3571	0.3570	0.4264	0.4428*	3.85%
	NDCG@20	0.3328	0.3331	0.2995	0.3488	0.3565	0.3888	0.3934	0.3745	0.3286	0.3604	0.3831	0.3844	0.4539	0.4689*	3.30%
	NDCG@50	0.3737	0.3772	0.3484	0.3861	0.3934	0.4180	0.4256	0.4104	0.3745	0.3988	0.4224	0.4235	0.4838	0.4985*	3.04%

Figure 3: Ablation study of our model (HR@5 and NDCG@5) (Upper left: Beauty, Upper right: Sports, Lower left: Cellphones, Lower right: Clothing).

(a) Parameter sensitivity of model embedding size.

(b) Parameter sensitivity of λ .

Figure 4: Parameter setting's effect on the model performance. (HR@5) on Amazon Clothing dataset.

(a) HR@5 comparison w.r.t. (b) NDCG@5 comparison w.r.t. Batch Size on Cellphone. Batch Size on Cellphone.

Figure 5: Parameter setting's effect on the model performance. (HR@5 and NDCG@5) on Amazon Cellphone dataset.